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Abstract. In this paper we propose two approaches to estimating the kinetic energy dissipation rate, based on the zero-crossing

method by Sreenivasan et al. [J. Fluid Mech., 137, 1983]. The original formulation requires a fine resolution of the measured

signal, down to the smallest dissipative scales. However, due to finite sampling frequency, as well as measurement errors,

velocity time series obtained from airborne experiments are characterized by the presence of effective spectral cut-offs. In

contrast to the original formulation the new approaches are suitable for use with signals originating from such experiments.5

The fittingness of the new approaches is tested using measurement data obtained during the Physics of Stratocumulus Top

(POST) airborne research campaign.

1 Introduction

Despite the fact that turbulence is one of the key physical mechanisms responsible for many atmospheric phenomena, informa-

tion on Turbulent Kinetic Energy (TKE) dissipation rate ε based on in-situ airborne measurements is scarce. Research aircraft10

are often not equipped to measure wind fluctuations with spatial resolution better than few tens of meters (Wendisch and

Brenguier , 2013). Due to various problems related to e.g. inhomogeneity of turbulence along the aircraft track and/or artifacts

related to inevitable aerodynamic problems (Khelif et al., 1999; Kalgorios and Wang, 2002; Mallaun et al., 2015), estimates of

ε at such low resolutions using power spectral density or structure functions are complex and far from being standardised (e.g.

compare procedures in Strauss et al. (2015), Jen-La Plante et al. (2016)). The question arises: can we do any better? Or at least15

can we introduce alternative methods to increase robustness of ε retrievals?

In the literature, there exist several different methods to estimate ε using the measured velocity signal as a starting point. One

of them is the zero- or threshold-crossing method (Sreenivasan et al., 1983) which, instead of calculating the energy spectrum

or velocity structure functions, requires counting of the signal zero- or threshold crossing events are, see Fig. 1a. Their mean

number per unit length is related to the turbulent kinetic energy dissipation rate. The zero-crossing method is based on a direct20

relation between ε and the root mean square of the velocity derivative 〈(∂u/∂t)2〉 (Pope, 2000), hence, the measured signal

should be resolved down to the smallest scales. However, this is not achievable in the case of the moderate-resolution flight

measurements, where the sampling frequency is typically 2− 3 orders of magnitude smaller than the frequency corresponding
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to the Kolmogorov scales. As a result, the number of zero-crossings per unit length NL for such signal is much smaller than

the one corresponding to a high resolution velocity signal where turbulence intensity is the same.

Interestingly, Kopeć et al. (2016) have shown, that the dissipation rates estimated from such NL using very low resolution

signals, although underestimated, were proportional to ε calculated using structure functions scaling in the inertial range. In

the follow up analyses we found that this is also the case for moderate-resolution airborne data from different sources. This led5

us to a question whether it would be possible to modify the zero-crossing method such that it can also be applied to moderate-

or low-resolution measurements whilst mitigating the observed underestimation at the same time. In this work we propose

two possible modifications of the zero-crossing method. The first one is based on a successive filtering of a velocity signal

and inertial-range arguments. In the second approach we use an analytical model for the unresolved part of the spectrum and

calculate a correcting factor to NL, such that the standard relation between ε and NL can be used.10

The new approaches are tested on velocity signals obtained during the Physics of Stratocumulus Top (POST) research cam-

paign, which was designed to investigate the marine stratocumulus clouds and the details of vertical structure of stratocumlus-

topped boundary layer (STBL) (Gerber et al., 2013; Malinowski et al., 2013). The observed winds were measured using the

CIRPAS Twin-Otter research aircraft with sampling frequency fs = 40Hz, which corresponds to the resolution 1.375m for

the speed of the aircraft U = 55m/s. The frequency fs is placed in the inertial range of the power spectral density (PSD) of15

the measured signal.

The present paper is structured as follows. In section 2 we review existing methods to estimate dissipation rate of the

turbulent kinetic energy. Next, in Section 3 we propose the two modifications of the zero-crossing method. They are applied to

a single signal from flight 13 and discussed in detail in Section 4. Next, in Section 5 we apply the procedures to several data

sets from flights 10 and 13 to show that the results of new approaches compare favourably with those obtained from standard20

power-spectrum and structure function methods. This is followed by Conclusions where the advantages of the new proposals

and perspectives for further study are discussed.

2 State of the art

The need to estimate the turbulent kinetic energy dissipation rate ε as well as variety of available data resulted in formulating

a number of estimation methods. Two of the most commonly used approaches are the frequency spectrum and the structure-25

function approach. Both are based on the inertial-range arguments, which follow from the Kolmogorov’s second similarity

hypothesis, hence, they are also called "indirect methods" (Albertson et al., 1997). In the homogeneous and isotropic turbulence

the one-dimensional longitudinal and transverse wavenumber spectra in the inertial range are given by (Pope, 2000):

E11(k1) = C1ε
2/3k

−5/3
1 , E22(k1) = C ′1ε

2/3k
−5/3
1 . (1)
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Here k1 is the longitudinal component of the wavenumber vector k, C1 ≈ 0.49 and C ′1 ≈ 0.65. E11 is related to the energy-

spectrum function E(k):

E11(k1) =

∞∫

k1

E(k)
k

(
1− k2

1

k2

)
dk. (2)

As discussed in Pope (2000) experimental data confirm Eqs. (1) within 20% of the predicted values of C1 and C ′1 over two

decades of wavenumbers. The energy-spectrum function in the whole wavenumber range can be approximated by the formula5

(Pope, 2000):

E(k) = Cε2/3k−5/3fL(kL)fη(kη), (3)

here C ≈ 1.5 as supported by experimental data, fL and fη are non-dimensional functions, which specify the shape of energy-

spectrum in, respectively, the energy-containing and the dissipation range. L denotes the length scale of large eddies and

η = (ν3/ε)1/4 is the Kolmogorov length scale connected with the dissipative scales. The function fL tends to unity for large10

kL whereas fη tends to unity for small kη, such that in the inertial range the formula E(k) = Cε2/3k−5/3 is recovered.

Within the validity of the Taylor’s hypothesis (1) can be converted to the frequency spectra, where k = (2πf)/U and U

is the mean velocity of the aircraft. In order to estimate the dissipation rate from the atmospheric turbulence measurements,

several assumptions should be taken. Most importantly, one assumes that the turbulence is homogeneous and isotropic and that

the inertial range scaling Eqs. (1) holds. Then, frequency spectrum of the longitudinal velocity component reads (e.g., Oncley15

et al., 1996; Siebert et al., 2006):

S(f) = α

(
U

2π

)2/3

ε2/3f−5/3, (4)

here α≈ 0.5. With this, the turbulent kinetic energy dissipation rate can be estimated from the PSD of the measured signal.

Alternatively, one can consider the n-th order longitudinal structure functions Dn = 〈(uL(x+ r, t)−uL(x,t))n〉, here uL

is the longitudinal component of velocity. In the inertial subrange, the second and third-order structure functions are related to20

the dissipation rate ε by the formulas (Pope, 2000):

D2(r) = C2ε
2/3r2/3, D3(r) =−4

5
εr. (5)

Experimental results of Saddoughi and Veeravalli (1994) indicate that C2 ≈ 2. with an accuracy of ±15%.

Another method, also based on the formula (3) is the velocity variance method (Fairall et al., 1980; Bouniol et al., 2004;

O’Connor et al., 2010). Let us consider a stationary signal u(t). The variance of this signal 〈u2(t)〉= u
′2 is equal to the integral25

of the power spectral density S(f) over the frequency space.

Let us now filter the signal u(t) with a band-pass filter with cut-off numbers [flow,fup] in the frequency space. We obtain a

signal uf (t) with the variance

u
′2
f =

fup∫

flow

S(f)df. (6)
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The above formula represents the portion of kinetic energy of u(t) contained in the frequencies between flow and fup. If we

introduce Eq. (3) for S(f) into (6) and integrate we finally obtain the following formula for the dissipation rate:

ε=

[
2(2π)2/3u

′2
f

3αU2/3(f−2/3
low − f−2/3

up )

]3/2

. (7)

Yet another method, also used in the atmospheric turbulence analysis (Sreenivasan et al., 1983; Poggi and Katul, 2009, 2010;

Wilson, 1995; Yee et al., 1995), is based on the number of zero- or level-crossings of the measured velocity signal. It dates5

back to the early work of Rice (1945) who considered a stochastic processes q and its derivative with respect to time ∂q/∂t.

He then assumed that these two processes have Gaussian statistics and are independent. The formulation of this method results

from investigating how frequently the signal crosses the level zero q(t) = 0, see Fig. 1a. Working under those assumptions

Rice (1945) showed that the number of crossings of the zero level per unit time is:

N2 =
〈(∂q/∂t)2〉

4π2〈q2〉 . (8)10

As 〈(∂q/∂t)2〉 is proportional to the dissipation rate of the kinetic energy, the zero-crossing method can be used to estimate

this quantity. As it was argued by Sreenivasan et al. (1983), Eq. (8) holds also with less restricted assumptions, with only q

having Gaussian statistics and, moreover, even for strongly non-Gaussian velocity signals the number of zero-crossings was

close to the theoretical value (8). For a spatially varying signal, Eq. (8) can be expressed as follows, using the characteristic

wavenumber kc (He and Yuan, 2001):15

kc =

√∫∞
0
k2E11dk∫∞

0
E11dk

. (9)

The characteristic wavelength is equal to λc = 2π/kc. Hence, the mean number of crossings (up- and downcrossings) per unit

length NL, with, on average, two crossing per λc is

NL =
2
λc

=
1
π
kc. (10)

We will now introduce the two-point correlation of velocity R11(r1e1) = 〈u1(x)u1(x + r1e1)〉. R11 and its derivatives can be20

written in terms of the inverse Fourier transform of E11 (Pope, 2000):

R11(r1e1) =

∞∫

0

E11(k1)eikr1dk1, R′′11(r1e1) =−
∫
E11(k1)k2

1eik1r1dk1. (11)

Using those relationships we can rewrite Eq. (9) in the following manner:

kc =

√∫∞
0
k2
1E11(k1)dk1∫∞

0
E11(k1)dk1

=

√
−R′′11(0)
R11(0)

. (12)

On the other hand, R′′11(0) and R11(0) define the Taylor longitudinal microscale λf (or the Taylor transverse microscale25

λg = λf/
√

2 - if we consider the transverse velocity correlations):

λf =
(
−1

2
R′′11(0)
R11(0)

)−1/2

. (13)
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Hence, Eq. 10 implies that the number of crossings per unit length is related to the longitudinal Taylor’s microscale λf through

λf =
√

2
π

1
NL

=⇒ 1
λ2
f

=
1
2
π2N2

L. (14)

A relation between dissipation and the Taylor microscales reads (Pope, 2000)

ε=
15νu′2

λ2
g

=
30νu

′2

λ2
f

. (15)5

Hence, finally, substituting (14) into (15) we obtain (Poggi and Katul, 2010)

ε= 15π2νu
′2N2

L. (16)

3 New proposals to estimate dissipation rate from a velocity signal with a truncated high-frequency part of the

energy spectrum

Based on Eq. (9) and (10) it is clear that the number of zero-crossings is related to the dissipation spectraD11(k) = 2νk2E11(k):10

π2u′2N2
L =

∞∫

0

k2E11dk. (17)

Figure 1b presents the profile ofD(k) = 2νk2E(k) where E(k) is described by the model spectrum (3) with fη = exp(−βkη)

(Pope, 2000), here β = 2.1 and η = 2mm. It is clear that the large wavenumber (small scale) part of the spectrum has the most

significant impact on the resulting value of NL.15

At the same time the data available from the POST measurements, where the sampling frequency was restricted to fs =

40Hz, can only account for a small part of the total dissipation spectrum (shaded regions in Fig. 1). If one was to use this

zero-crossing method (Eq. 16) in order to estimate ε it is clear that the measured number of signal zero-crossings would lead

to significant underestimation of the spectrum integral as compared to the full spectrum measurements down to the very small

scales. We would like to propose reformulation of the original zero-crossing method in order to estimate the dissipation rate20

from the number of signal zero-crossings based on a restricted range of k-values available from the airborne measurements.

Two proposals for such procedures are given further in the article.

3.1 Method based on successive filtering of a signal

Let us consider a signal u1(t) resolved in a certain range of frequencies f0 < f < f1. Converting the wavenumber spectrum to

the frequency spectrum we obtain from Eq. (17) the following relation for the number of signal-crossings per unit time25

u′21 N
2
1 = 4

f1∫

f0

f2S(f)df. (18)
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Figure 1. a) A signal q(t) crossing the level q = 0. b) Dissipation spectra: the range of k-numbers covered by the POST measurements is

denoted by the colour shading.

Similarly as in the velocity variance method described in Section 2, let us now filter the signal using a low-pass filter charac-

terized by a different cut-off frequency f2 < f1. In such a case we obtain a different signal u2(t) with a reduced number of

zero-crossings N2 <N1:

u
′2
2 N

2
2 = 4

f2∫

f0

f2S(f)df. (19)

If we subtract (19) from (18) we obtain5

(u
′2
1 N

2
1 −u

′2
2 N

2
2 ) = 4

f1∫

f2

f2S(f)df. (20)

In the inertial range S(f) is described by Eq. (4), hence, if both f1 and f2 belong to the inertial range

(u
′2
1 N

2
1 −u

′2
2 N

2
2 ) = 4α

(
U

2π

)2/3

ε2/3
f1∫

f2

f1/3df = 3α
(
U

2π

)2/3

ε2/3
(
f

4/3
1 − f4/3

2

)
. (21)

If we proceed further and filter the signal using a series of cut-off frequencies fi < f2, we can estimate ε form Eq. (21) using a

linear least squares fitting method.10

3.2 Method based on recovering the missing part of the spectrum

In this method we attempt to account for the impact of the missing part of the dissipation spectrum by introducing a correcting

factor to the number of zero-crossings per unit length NL. The number of crossings per unit length is calculated from the

6
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measured signal where the fine-scale fluctuations having the highest wavenumber kcut will be denoted byNcut and the variance

of this signal will be denoted by u
′2
cut. From Eq. (17) it follows that Ncut is related to NL by the formula

u
′2N2

L = u
′2
cutN

2
cut

∫∞
0
k2
1E11dk1∫ kcut

0
k2
1E11dk1

= u
′2
cutN

2
cut

(
1 +

∫∞
kcut

k2
1E11dk1

∫ kcut

0
k2
1E11dk1

)
. (22)

We then assume a certain form of the energy spectrum (3) with fη = e−βkη, here β = 2.1 (Pope, 2000) and fL = 1, as the

largest scales do not contribute much to the final value of the dissipation rate. With this, the energy spectrum reads5

E(k) = Cε2/3k−5/3e−βkη, (23)

here C = 1.5. The integral of the dissipation spectrum 2νk2E(k) should be equal to ε, which implies that β = 2.1. Hence,

rather than being an empirical constant, the value of β in Eq. (23) is fixed by theoretical constrains. The corresponding one-

dimensional spectrum E11 can be calculated from Eq. (2)

E11(k1) = Cε2/3
∞∫

k1

k−8/3e−βkη
(

1− k2
1

k2

)
dk. (24)10

As a result of introducing Eq. (24) into Eq. (22) and some additional rearrangements we obtain

u
′2N2

L ≈ u
′2
cutN

2
cut


1 +

∫∞
kcutβη

k2
1

∫∞
k1
k−8/3e−k

(
1− k2

1
k2

)
dkdk1

∫ kcutβη

0
k2
1

∫∞
k1
k−8/3e−k

(
1− k2

1
k2

)
dkdk1


= u

′2
cutN

2
cutCF , (25)

here CF is the correcting factor

CF = 1 +

∫∞
kcutβη

k2
1

∫∞
k1
k−8/3e−k

(
1− k2

1
k2

)
dkdk1

∫ kcutβη

0
k2
1

∫∞
k1
k−8/3e−k

(
1− k2

1
k2

)
dkdk1

. (26)

The value of ε can be calculated numerically using an iterative procedure.15

As a starting point for this procedure, a first guess for the Kolmogorov length η = (ν3/ε)1/4 should be given. With this, we

calculate the correcting factor CF from Eq. (26) and next, from Eq. (16) the value of dissipation can be estimated as

ε= 15π2νu
′2N2

cutCF . (27)

We start the next iteration by calculating again the Kolmogorov length η = (ν3/ε)1/4, the corrected value of CF from Eq. (26)

and the new value of ε from Eq. (27). After several iterations the procedure converges to the final values of the dissipation20

rate and Kolmogorov’s length η with an error defined by a prescribed norm ∆η = |ηn+1− ηn| ≤ dη . The successive steps are

summarized in a form of algorithm 3.2.

It should be noted that in this approach we do not have the empirical inertial-range constant C, and we calculate the dissi-

pation rate directly from the formula with viscosity (27), as in the original zero-crossing method see Eq. (16) and Poggi and

Katul (2010).25
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Algorithm 1 Procedure of iterative ε determination based on missing spectrum part recovery

ε← 15π2νu
′2N2

cut

η← (ν3/ε)1/4

∆η← 100dη

while ∆η > dη do

Use Eq. (26) to calculate CF
ε← 15π2νu

′2N2
cutCF

∆η← |η− (ν3/ε)1/4|
η← (ν3/ε)1/4

end while

4 In depth analysis of the proposed methods’ behaviour

4.1 Method based on the number of zero-crossings of successively filtered signal

In order to present the more detailed properties of the procedure we used velocity signal from one of the horizontal flight

segments that took place within the turbulent atmospheric boundary layer. This segment was a part of flight 13 of the POST

airborne research campaign (Gerber et al., 2013; Malinowski et al., 2013). The data were provided in the East, North, Up (ENU)5

coordinate system. For further study we have chosen the second (NS) velocity component. The signals sampling frequency was

fs = 40Hz and the duration was t= 438.75s. The mean flight velocity U during that time was about 55ms−1 and the standard

deviation u′ = 0.28ms−1.

We have estimated the dissipation rate based on the number of zero-crossings, according to the methods outlined in section

3.1. The dissipation rate calculated from the frequency spectrum and the structure function for the whole flight fragment Eqs.10

(4) and (5) was equal, respectively, εPSD = 2.48× 10−4 m2s−3 and εSF = 2.52× 10−4 m2s−3. These values were obtained

from the linear least-squared fit procedure in the range f = 0.3− 5Hz for the frequency spectrum and r = 11− 183m for the

structure function, see Fig. 2.

Before applying the threshold crossing procedures the signal had to be filtered in order to eliminate errors due to large scale

tendencies as well as small scale measurements noise. For this purpose we used the sixth order low-pass Butterworth filter15

implemented in Matlab (Butterworth, 1930). Figure 3 presents the velocity signal over t= 50s before filtering (top graph) and

the same signal after filtering with fcut = 5Hz and fcut = 1Hz.

The probability density functions (PDF) of the normalised original signal and the filtered signals (Figure 4a) can all be

approximated by the normalised Gaussian distribution, hence, the application of the zero-crossing method is justified, also for

the filtered signals. It is worth noting that the spectra (f2S(f), Fig. 4a) display a peak at f = 10Hz. This phenomenon has20

been indicated in the previous analyses of POST (Jen-La Plante et al., 2016) and appears due to measurement errors. We will

address this issue further in this paper.

8

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-401, 2017
Manuscript under review for journal Atmos. Meas. Tech.
Published: 16 January 2017
c© Author(s) 2017. CC-BY 3.0 License.



10
-1

10
0

10
1

f [Hz]

10
-4

10
-3

10
-2

10
-1

10
0

S
(f

) 
[m

2
/s

]

10
1

10
2

10
3

r [m]

10
-2

10
-1

D
2
 [
m

2
/s

2
]

Figure 2. a) Frequency spectrum, b) second order structure function. Polynomial fit is presented as a coloured dashed line.
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Figure 3. Velocity fluctuations: top graph - unfiltered signal, middle graph - signal filtered with fcut = 5Hz, bottom graph - signal filtered

with fcut = 1Hz.
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unfiltered signal (black line with symbols), signal filtered with fcut = 5Hz (green, solid line), signal filtered with fcut = 2Hz (red dotted

line), signal filtered with fcut = 1Hz (blue, dashed line).

In order to use the method based on successive signal filtering we filtered the signal with different values of fcut in the

range fcut = 0.1− 19Hz. For each fcut = fi we calculated the number of zero-crossings Ni based on the filtered signal. The

zero-crossing event was detected when the product of two consecutive values of velocity fluctuation v(t)v(t+ ∆t)< 0, here

∆t= 1/fs = 0.025s. First observation is that Ni decreases with decreasing fi, see Fig. 5a. In order to estimate the value of

dissipation rate we used Eq. (21) that was for the convenience of use rewritten as5

(u
′2
i N

2
i −u

′2
1 N

2
1 ) = 3α

(
U

2π

)2/3

ε2/3
(
f

4/3
i − f4/3

1

)
. (28)

Results for f1 = 0.3Hz and fi in the range (0.3Hz,5Hz) are presented in Fig. 5b. Using Eq. (28) we have used linear fitting

of the differences u
′2
i N

2
i −u

′2
1 N

2
1 against f4/3

i − f4/3
1 . The resulting value for the analysed flight section was εNCF = 2.54×

10−4 m2s−3. This value is comparable with the estimations performed using classic methods based on the power spectra and

structure functions which resulted respectively in εPSD = 2.48× 10−4 m2s−3 and εSF = 2.52× 10−4 m2s−3.10

4.2 Method based on missing spectrum recovery

The same signal was also analysed using the second method proposed in Section 3.2, Eqs. (26,27). In order to simplify numer-

ical implementation of the method we notice that for the assumed form of the spectrum E(k) given in Eq. (23), the formula
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2
i with filter cut-off fcut. The linear fit from formula (28) is given by the magenda dashed line.

(24) for the one-dimensional spectrum E11(k1) can be written in terms of the incomplete Γ function as follows

E11(k1) = Cε2/3 (βη)5/3
[
Γ(−5/3,k1βη)− (βη)2 k2

1Γ(−11/3,k1βη)
]
, (29)

here

Γ(a,x) =

∞∫

x

e−tta−1dt. (30)

The correcting factor (26) in terms of the Γ functions reads5

CF = 1 +

∫∞
kcutβη

k2
1

[
Γ(−5/3,k1)− k2

1Γ(−11/3,k1)
]

dk1
∫ kcutβη

0
k2
1 [Γ(−5/3,k1)− k2

1Γ(−11/3,k1)]dk1

. (31)

This is a function of a single argument (kcutβη). For reference it is plotted in Fig. 6a.

With such preparation we applied the iterative procedure, as described in Section 3.2. In POST experiment the effective

cut off frequency was estimated at fcut = 5Hz which corresponds to kcut = (2πf)/U = 0.57m−1. Using the sixth order

Butterworth filter this resulted in u
′2N2

cut = 0.0000719 · 1/s2 for this signal. Accordingly we used the algorithm (3.2) with10

ν = 1.5 · 10−5m2s−1 and dη = 10−6m. We approximated the integrals in Eq. (31) using the trapezoid rule. The results of

successive approximations of CF and ε converge fast to a fixed value, independently of the initial guess of ε= ε0 (Figs. 6a

and 6b). The increment dk1 in Eq. (31) was approximated by ∆k1 = 5 · 10−6 m−1. For such choice we obtained εNCR =
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2.61 ·10−4 m2s−3. We used this as a reference value. In order to estimate the numerical accuracy of the proposed algorithm we

calculated the error ∆ε= |ε− εNCR| for different values of ∆k1, see Fig. 7a. We obtain ∆ε∼∆k1.3
1 .

It is worth noting that the proposed method is accounting for a dominant (and not directly measured) part of the spectrum

based on the theoretical knowledge about its shape. This knowledge is simply reduced to the form of the correcting factor CF .

Fig. 7b illustrates the relation between the measured and the estimated part of the spectrum for the analysed case.5

The result of application of this method εNCR = 2.61 · 10−4 m2s−3 is comparable with the dissipation rates obtained

using other methods, as discussed in Section 3.1, εPSD = 2.48 · 10−4 m2s−3, εSF = 2.52 · 10−4 m2s−3 and εNCF = 2.54 ·
10−4 m2s−3. The relative differences between those estimations are less than 5%.

5 Broader overview of the methods’ performance

Following the findings presented in the previous section both proposed methods were tested on much larger collection of10

data. For this purpose we used velocity signals also obtained during the POST research campaign. We have chosen horizontal

segments at various levels within the boundary layer from flights TO10 and TO13. These flights were investigated in detail

by Malinowski et al. (2013), due to the fact that they represent two thermodynamically and microphysically different types of

stratocumulus topped bondary layer.

The dissipation rates of turbulent kinetic energy estimated from the standard structure function method εSF and dissipation15

rates estimated from the modified zero-crossing methods εNCF and εNCR introduced in Sections 3.1 and 3.2, respectively, are

compared with the results obtained from the power spectra method εPSD in Fig. 8. For flight 10 we obtained the following

linear fits and the correlation coefficients r

εSF = 0.74 εPSD + 9.1 · 10−5, r = 0.997,

εNCF = 0.88 εPSD + 1.2 · 10−5, r = 0.995,20

εNCR = 0.66 εPSD + 7.9 · 10−5, r = 0.997,

while for flight 13 we have

εSF = 0.76 εPSD + 1.4 · 10−4, r = 0.956,

εNCF = 0.75 εPSD + 1.2 · 10−4, r = 0.881,

εNCR = 0.62 εPSD + 1.4 · 10−4, r = 0.989.25

The methods based on the signal zero-crossings give comparable results to those resulting from standard methods. It seems

that εNCR is slightly underestimated as compared to the results of the other methods, however it should be noted that while all

other methods are based on the inertial-range arguments, in order to obtain εNCR one needs to use viscosity and full spectrum

assumptions (resulting from the use of Eq. (27)). Hence, due to different physical arguments we can expect the results to be

somewhat different than in case of the previous methods. We believe that the there is a fair consistency in those results because30
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Figure 8. Dissipation rate of the kinetic energy estimated from the structure function method εSF , zero-crossings of successively filtered

signals εNCF and zero-crossings of signals with recovered part of the spectrum εNCR as a function of εPSD (from power spectra method).

Each point represents an estimate from a single horizontal segment of flight in the atmospheric boundary layer, a) flight 10, b) flight 13.

one should take into account that the standard frequency spectra and structure function methods calculate approximate values

of ε. Moreover, we have indicated in Section 2 that the constants α and C2 in Eqs. (4) and (5) are estimated with an accuracy

of ±15%.

6 Conclusions

In the present work we proposed two novel modifications of the zero-crossing method, such that it can be applied to moderate-5

resolution measurements. Turbulent kinetic energy dissipation rates obtained using the proposed methods were compared to the

estimates resulting from the use of the standard power-spectrum and structure function approaches. It is a remarkable testimony

to the statistical turbulence theory consistency that those results are in quite good agreement despite using such fundamentally

different approaches.

From the perspective of practical applications we can think of several possible advantages of the zero-crossing methods. First,10

the number of signal zero-crossings can be calculated without difficulty and the proposed procedures are easy to implement.

Second, it is not necessary to choose any averaging windows, as it is the case for the power-spectrum and structure function

methods. Hence, the obtained results will not depend on the width of this window. Finally, we can deal with a situation when

the recorded amplitude of certain frequencies is deteriorated due to measurement errors (e.g. as it is seen in Fig. 4b, we have a

spurious peak at f = 10Hz), still, the counted number of signal zero-crossings could remain unaffected (see e.g. Fig. 5a, where15
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no distortion at f = 10Hz is observed). In such cases the zero-crossing method could be advantageous over the power-spectrum

and structure-function methods.

There are several perspectives for further work. First, the proposed methods could be tested for a wider range of signals (e.g.

from Eulerian measurements within the boundary layer adopting Taylor hypothesis), characterized by different resolutions

and obtained under varying atmospheric conditions, to assess the scope of their applicability. Second, as far as the model5

spectrum is concerned, instead of (23) different forms for the function fη in Eq. (3) could be tested (see e.g. Chap. 6.5.3 in

Pope (2000) or Bershadskii (2016)). In the present study we have chosen the simplest form of fη , Eq. (23), in order to present

the one-dimensional energy spectrum E11 in terms of Γ functions, see Eq. (29). However, other forms of spectrum could have

potentially significant impact on the results which should be analysed.

7 Code availability10

The MATLAB code written for the purpose of this study is available from the authors upon request.

8 Data availability

POST data are available in the open database: https://www.eol.ucar.edu/projects/post/
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Strauss L., Serafin S., Haimov S., and Grubišić V.:Turbulence in breaking mountain waves and atmospheric rotors estimated from airborne

in situ and Doppler radar measurements. Q. J. R. Meteorol Soc., 141, 3207–3225, 2015

Sreenivasan, K., Prabhu, A. and Narasimha, R.: Zero-crossings in turbulent signals, Journal of Fluid Mechanics, 137, 251–272, 1983.

Wendisch M., and Brenguier, J-L., (eds): Airborne Measurements for Environmental Research: Methods and Instruments, Wiley-VCH Verlag

GmbH & Co. KGaA, 641p., 2013.10

Wilson, D. J.: Concentration Fluctuations and Averaging Time in Vapor Clouds, American Institute of Chemical Engineers, New York, 1995.

Yee E., Kosteniuk, P. R., Chandler G. M., Biltoft, C. A. and Bowers J. F.: Measurements of level-crossing statistics of concentration fluctua-

tions in plumes dispersing in the atmospheric surface layer, Boundary-Layer Meteorol., 73, 53–90, 1995.

17

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-401, 2017
Manuscript under review for journal Atmos. Meas. Tech.
Published: 16 January 2017
c© Author(s) 2017. CC-BY 3.0 License.


